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By L. F. Shampine and R. J. Thompson* 

Abstract. Two difference methods for approximating some first-order nonlinear hyperbolic 
differential equations are considered. The methods apply to problems arising in a number 
of physical applications. Each of the methods is explicit and can be implemented on a 
computer easily. It is proved that the methods are first-order convergent in the maximum 
norm. For one of the methods in order to obtain convergence it is necessary to monitor, 
and perhaps change, the size of the time step as the computation proceeds. The other 
method is unconditionally convergent. 

1. Introduction. We shall present two finite-difference schemes for the solution 
of some initial-boundary value problems for systems of nonlinear hyperbolic partial 
differential equations. Our schemes are first-order, explicit, one-level schemes, and 
we shall show that they are convergent in the maximum norm. One is uncon- 
ditionally stable and is very easy to study and use. The other is conditionally stable, 
but it applies to pure initial-value problems too. 

The kinds of problems we treat arise in a wide variety of applications. In par- 
ticular, some problems in chemical engineering provide excellent motivation for our 
study. Koenig [1] has shown that the application of invariant imbedding to certain 
design problems in chemical engineering leads to equations of the form 

au 
+ g(x, u) 

a 
-f(x, u) 

u(x, 0) 0 u(0, t). 
For these applications the solutions are smooth and a premium is placed on sim- 
plicity and convenience rather than on high accuracy. The function g will not 
generally be nonnegative for all values of its arguments, but, on physical grounds, 
one expects g(x, u(x, t)) _ 0. Our difference schemes provide fast, simple methods 
for solving such a problem numerically. 

Chemical engineering applications are by no means the only source of problems 
like the preceding. Wing [2] applies invariant imbedding to some nonlinear models 
of particle transport in a rod to derive similar equations. Systems of partial differ- 
ential equations also arise naturally in some transport models [2], [3]. The systems 
have many properties in common with the single equations, but they are pure 
initial-value problems. For this reason we emphasize that our conditionally stable 
scheme copes with such problems although we shall not give the details. 

Courant, Isaacson, and Rees have given in [4] a method for solving nonlinear 
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systems of hyperbolic equations. Although the method is only conditionally stable, 
the analysis involves the unknown solution so that no computable stability criterion 
is available. As Forsythe and Wasow point out in their discussion of the method 
[5, p. 51], for nonlinear problems one must often be content with this unsatisfactory 
state of affairs. Kowalski [6] has obtained a usable stability condition by making 
very restrictive additional assumptions. Our modification of the method yields a 
computable stability condition with quite reasonable hypotheses, indeed precisely 
those ordinarily available in the chemical engineering context cited above. In addi- 
tion our difference scheme does not depend on the problem and its solution so that 
it is easier to program and use. 

A method more closely related to our unconditionally stable scheme was dis- 
cussed by Keller and Thomee [7]. Their method is restricted to problems with two 
independent variables and ours is not, but they can handle more general boundary 
conditions. They prove the scheme is unconditionally stable though their analysis 
applies only if the mesh spacing is sufficiently small-how small depending on the 
unknown solution. Our scheme is also unconditionally stable and our analysis 
applies for all mesh spacings. Since we make a rather different application of the 
maximum principle, our analysis is somewhat simpler. 

In Section 2 the general class of differential equations to be treated is introduced. 
The next two sections deal with the numerical schemes. In Section 3 a conditionally 
stable approximation which uses forward time differences is discussed. The scheme 
discussed in Section 4 uses backward time differences and is unconditionally stable. 
In Section 5 some numerical examples are discussed. 

2. The Differential Equations. In what follows x will denote (xi, * x , xp) and u 
will denote (ul, . *, us). We will consider difference methods for approximating 
the system: 

for i I, * s 

(1 - 
+ L, gij(x, t, u) a- = fi(x, t, u)I 

u(x,0)= a(x)ontheset0<x a;j<aj;=1,..,p 
for =1, * ,p 

ui(x, t) = i3O1(x, t) on the set 0 < t < T 

XlI 0; 0 < xi < aj, j II ... *I* py j I. 

Here the functions gi, ft. ci and o3il are assumed given and are defined on the 
appropriate sets. 

Let R be the set 

[0, all X [0, a2] X ***X [0, ap] X [O. T] . 

We are interested in approximating a solution of (1) at mesh points in R. The hy- 
potheses regarding (1) will differ slightly for the two difference methods to be con- 
sidered. However, it will always be assumed that: 
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On R the system (1) has a solution u = (ul, * * *, u8) for which each component 
has continuous derivatives through order two. For i = 1, * * *, s and j = 1, 
* , p, gij(x, t, u(x, t)) ? 0 everywhere on R. Finally, there are Lipschitz 

(2) constants L1 and L2 such that for any two vectors v = (vi, **, s) and w = 

(w1, * *, w8) it is true that sup !gij(x, t, v) - gij(x, t, w)f < LI max Iv - wil 
and sup If(x, t, v) - f (x, t, w)l < L2 max Iv- wil where the sups are taken 
over = 1, *i, s;j = 1, * p and all the points of R. 

Note that it is not assumed that the functions g~i are nonnegative. Thus, for ex- 
ample, the results to be presented apply to the single equation ut + uux = 0 for 
appropriate initial and boundary conditions. 

Pure initial-value problems for equations like (1) have been studied by Courant, 
Isaacson, and Rees [4]. They deal with only two independent variables and use 
forward differences in the time (t) variable. By allowing the signs of the gij to in- 
fluence the difference approximation in the x variable they avoid our requirement 
that gij(x, t, u(x, t)) > 0. However, for initial-boundary value problems the signs 
of the gij are intimately connected with the type of boundary conditions that are 
imposed, and for boundary conditions like those in (1) one expects the gqj to be non- 
negative. The Courant, Isaacson and Rees scheme has a stability condition on the 
step size in t which involves the unknown solution u(x, t). Recently Kowalski [6] 
has studied a similar scheme for initial-boundary value problems and for more 
general systems of equations. His stability condition does not involve knowledge 
of the solution, but it does require, in our notation, the knowledge of constants 
'yij such that 0 < gij(x, t, u) _ Tyij. These inequalities are to hold for all (x, t, u) 
in the domain of the gij. This is very considerably more stringent than our require- 
ments and we obtain essentially the same results. We shall show how these difficulties 
are avoided by using a slightly different scheme and a computable stability condi- 
tion. Our conditionally stable scheme also works for pure initial-value problems 
which are important too, but their treatment being little different from the initial- 
boundary value case, we give only the latter in detail. 

We shall also give an unconditionally stable scheme using backward time 
differences. Keller and Thomee [7] have given a similar scheme for some initial- 
boundary value problems involving only two independent variables. Their boundary 
conditions are more general than ours and by changing the difference scheme accord- 
ing to the sign of the giq, they avoid our sign requirement. They also adjust the 
difference scheme according to the magnitude of the gij. They find it necessary to 
require the step sizes to be sufficiently small in order to apply their analysis. Al- 
though the condition on step sizes depends on the solution, it is not as troublesome 
as a stability condition stated in terms of the unknown solution. Our simple analysis 
applies for all step sizes and is quite different in approach. They bound the error 
at one time level in terms of the error at the preceding level. Our approach proceeds 
by diagonal lines. 

Both of our difference schemes will first be considered for linear systems, and 
the results will then be used to obtain convergence proofs for the nonlinear system 
(1). Thus we shall be considering the linear system: 

for i = 1, * s 
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(- + , gi(x, t) -_ = fi(x, t), 
(3) ~~at __1 Ox 

ui(x, 0) = ai(x) on the set 0 _ X < aj; j1, ,p 

for= 1, * ..,p 

ui(x, t) = flil(x, t) on the set 0 < t < T 

XI = 0;0< Xi aj= 1, *,p, j 1. 

Whenever such a linear system is considered it will be assumed that 

On R the system (3) has a solution u = (ul, * * *, us) for which each component 
(4) has continuous derivatives through order two, and each of the functions 

gigj i = 1, ... , s; j = 1, ..., p, is nonnegative on R. 

3. Forward Time Differences. Suppose each interval [0, aj] is subdivided into 
intervals of length hp. A solution of the system (1) is to be approximated on a mesh 
in R. The points of the mesh will have coordinates of the form (vihi, * *, php, t) 
where the Vj are integers, to = 0 and, for n _ 1, to = ko + * * * + knel. The k's are 
the time steps, and the way they are chosen will be discussed below. For brevity a 
mesh point will be denoted by (v, n). The backward shift operator Bj is defined by 
Bjv = (vl, *.., I , v j- 1, vj+1, *.., vp). As an approximation for (1) we will 
consider the following system of difference equations: 

fori=1, ***, s 

n(5 n + 1) - iU(v, n) , U(v U , n) - U)(Bj, n) 
(5) kIo= n 

= fi(p, ny U(P, n)). 

Here U = (U1, , U8) and gij(p, n, U(v, n)) denotes the larger of 0 and 
gij(v, n, U(v, n)). The system (5) is, of course, to be solved subject to initial and 
boundary conditions determined by those specified in (1). 

The device of replacing gij(v, n, U(v, n)) by pij(v, n, U(v, n)) is important. We 
are only assuming the gij are nonnegative when evaluated at the true solution 
u(x, t). The nonnegativity is needed in our proof so we simply make the coefficients 
satisfy this requirement. As it turns out, this global constraint can only improve 
the computed values. 

The system (5) can be solved explicitly at the mesh points of R once the h's 
and k's have been specified. The remainder of this section will be devoted to con- 
sidering the question of the convergence of the approximations to the solution of 
(1). First we shall deal with the special case when the system is linear. (5) can then 
be written in the form 

fori= 1, **,s 

(6) Ui(v, n + 1) = - E n) )Ui(v, n) 

+ . E n) Ui(B3v, n) ? fnfi (V n) 
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It is well known that even in the very special case when (3) is the single homo- 
geneous equation au/at + a(au/ax) = 0, a > 0, this difference approximation is 
not convergent unless an appropriate restriction is placed on the choice of the mesh 
lengths. The restrictions will be stated as conditions on the choice of the time steps 
kn. Suppose then that the hj, j = 1, ** *, p, are specified, and let X. = kI EX=1 1/hi. 
The X. (and so the kn) are chosen subject to the following conditions: 

Suppose to is known and 0 ? t, < T. (Here, again, to = 0 and, for n > 1, 

(7) tn = k0 + * c - + kn-l.) Let n =max gii(v, n), i = 1, *, s; j = 1, , p 
and (v, n) in R. Then if gn < 1, ?wn (= kZo EP_, 1/hj) is chosen to satisfy 0 < 
X n < 1; otherwise Xn is chosen to satisfy 0< An <X i/gnq 

(7) can be regarded as a stability condition for the difference equations (6). For 
the single equation au/at + a(au/ax) = 0, a > 0, (7) requires that for the cor- 
responding difference equation the time step divided by the x mesh length must be 
less than or equal to 1/a. This is, of course, the familiar stability criterion. 

LEMMA 1. Let u = (ul, * * *, u,8) be a solution for the linear system of equations (3), 
and suppose the conditions in (4) are satisfied and that the functions gij are bounded 
on R. For j = 1, ***, p suppose the interval [0, aj] is subdivided into intervals of 
length cj. Then there exists a constant K such that the following is true: if the intervals 
[0, aj] are subdivided into intervals of length hj such that hj = hcj for some number h, 
and if U = (U1, * *, Us) is the solution for the difference equations (6) where the 

k. have been chosen so that the conditions in (7) are satisfied, then for i = 1, *, s and 
(v, n) in R, Iui(v, n) - U(, n)I < Kh. 

Proof. The proof is standard, and the details will be omitted. By expanding the 
ui in Taylor's series about the mesh points in R one is able to derive a system of 
difference equations satisfied by the us - Us. A maximum principle holds for these 
equations when the conditions in (7) are satisfied. The inequality to be proved then 
follows immediately. 

We now turn to a consideration of the difference equations (5) as an approxima- 
tion for the nonlinear differential equations (1). The choice of Xn for this case is 
expressed in terms of a parameter r which does not appear in (7). r is any number 
which satisfies 0 < r < 1, but it remains fixed as the mesh is refined. 

Suppose tn is known and O < tn < T. (to = O and, for n > 1,to = ko + 

()+ ken_.) Let Ugn = max g-ij(v, n, U(P, n)), i = I, *** , s; j- =I, ***, p and 
(8) (v, n) in R. Then Xn (= kn EJLl 1/hj) is chosen as follows: if g ? r, then 

An = 1; otherwise, Xn = r/U. 

THEOREM 1. Let u = (ul, . *, us) be a solution for the system of equations (1), 
and suppose the conditions in (2) are satisfied. In addition, suppose there is a bound B 
such that for i = 1, * * , s; j = 1, *, p and (x, t) in R, gij(x, t, u(x, t)) < B. Let 
r satisfy 0 < r < 1, and for j = 1, * *, p suppose the interval [0, aj] is subdivided 
into intervals of length cj. Then there exists a constant K such that the following is true: 
if the intervals [0, aj] are subdivided into intervals of length hj such that hj = hcj for 
some number h sufficiently small, and if U = (U1, *, Us) is the solution for the 
difference equations (5) where the kn have been chosen to satisfy the conditions in (8), 
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then for i = 1, *, s and (v, n) in R, Iuj(p, n) - Ui(v, n)j < Kh. Finally, there 
is a number M > 0 such that the XA (= k7S EX= 11/hj) satisfy M < An < 1. 

Remark. Since h can be made arbitrarily small, the theorem shows that the 
solution for the difference equations can be made arbitrarily close to the solution 
for the differential equations at the mesh points of R. The bounds on the XA guarantee 
that any point in R can be made arbitrarily close to a mesh point. The bound B is 
used in showing the existence of M so that this last statement can be made. How- 
ever, we emphasize that only the existence of B is required. B is not used in the 
computational procedure, and we do not need to know its magnitude. 

Proof of Theorem 1. We first note that (8) implies that the X. satisfy XA ? 1. Now 
for i = 1, .. *, s; j = 1, * * *, p and (x, t) in R, let Gij(x, t) denote g j(X, t, u(x, t)). 
On R each of the functions Gij is defined and satisfies 0 < Gij ? B. Similarly, let 
Fi(x, t) denote fi(x, t, u(x, t)). Then u satisfies the linear system: 

for =,***, s 

+ Gij(x, t) ,' = Fi(x) 0 

Foreach n let Gn = max Gij(p, n), i = 1, , s; j = 1, * *, p and (v, n) in R. It 
is easy to show: 

Let n be fixed and suppose there is a number P such that, for i = 1, * *, s; 
(9) j = 1, ***, p and (v, n) in R, lgij(p, n, U(v, n)) - Gij( n)| ? 

P. Then - Gnj ' P. 

Now let ei(P, n) = ui(P, n) - U(, n) and, for each n, jejj = max Iei(P, n)J, 
i =, **, s and (P, n) in R. We shall prove: 

There is a 5 such that if 1jenlj < 5 then X, satisfies the following: if Gn < I 
(10) then 0 < X,, < 1; otherwise Xn < I/Gn. In addition, there is a number M > 0 

such that M < , < 1. 

By (2), |gij(p, n, U(v, n)) - Gij(p, n)j Lille.11. Let 5 = r(1 - r)/Li. Then if 
Ilenll ?< , Igij(P, n, U(P, n)) - Gij(P, n) I r(I - r). By (9), U - G.I < r(I - r). 
Since Gn < B, 9n < B + r(1 - r), and so M can be taken to be the smaller of 1 
and r/[B + r( -r)]. 

To complete the proof of (10) it remains to be shown that if G, ? 1 then X n < 1, 
or if Gn > 1 then X,, < 1/G.. Since X. always satisfies Xn ? 1, we need only consider 
the case Gn > 1-i.e., we will assume Gn > 1 and prove that X. < I/Gn. We first 
note that g- # 0 and X. = r/9-, since otherwise U,, < r and so, since we know that 
Ig-n- Gn? r(1 - r), Gn-< gn + r( -r) < r + r(1 - r) < 1-but this con- 
tradicts Gn > 1. Now, since Gn > 1 > r, -r(1 - r) > -Gn(1 - r) and Gn - 
r(I - r) > Gn - Gn(I - r) = rGn. Thus, again using I - GnI < r(I - r), it fol- 
lows that n _ Gn - r(1 - r) > rGn, and so r/Un (= Xn) < r/(rGn) = I/Gn. 

Now let Vj(P, n) satisfy the difference equations: 

fori=1, -, s 
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Vi(v, n + 1) ( - Jok Gij(v, n)/h) Vi(v, n) 
(11) j=l 

P i==1 

+ kn >Z (G(ij', n)/m-1) FsBv n) + 1cnFi(v, n). 

Let Ei(v, n) = Vi(v, n) - Ui(v, n) and Si(v, n) = ui(v, n) - Vi(v, n). For each n, 
IIEJII and j18nIl will denote max IEj(v, n) and max Jgi(v, n){, respectively, where 
the max is taken over i = 1, ***, s and the mesh points (v, n) in R. Clearly 

(12) I|eniI <? 18nil + IIEn|I 
By Lemma 1 and (10), 

(13) There exist numbers K' and 5 such that, for n > 1, 
(13) I||nll < K'hif IjekII <? fork =0,1,*--,n-1. 
Combining (5) and (11) it follows that, 

EQ(vn + 1) = (i-knJ pjij(v,n, U(v,n))/hj) Ei(v,n) 

a1' 

+ kn E (pijtv, n, U(v, n))/hj)Ei(Bjv, n) 
j=l 

+ kJ[Fi(v, n) - fi(v, n, U(v, n))] 
p 

+ kn [Uij(v, n, U(v, n)) - Gij(v, n)] 
,_1 

X [Vi(v, n) - Vj(Bjv, n)]/h;. 
By (2), IFj(v, n) - f,(v, n, U(v, n))! < L21|en|I. Since Gjj > 0, 

Igii(v, n, U(v, n)) - Gj(v, n)I < qij(v, n, U(v, n)) - Gijv, n)| < LlJjen~J 
Now (8) implies that 

/ P\ 

(1-kn J 9qjj(v, n, U(v, n))/h1) > 0 

and since gi _ 0, it follows that 
P 

JE (v, n + 1)1 < IIEnjI + knL2Ijenil + knJillenji X IVi(v, n) - Vi(Bjv, n)l/h . 

Now 

IV(v), n) - | < 218n| + ui(v, n)- u(Biv, n)I _ 21jFnil + K"h; 
where K" is a bound on R for jauk/xj, Jo = 1, ,s; I = 1, * * *, p. Thus 

Ej(v, n + 1)j < |jEnjj + knL2Ilenil + knLilenji L (2119njl + K"hj)/hj 

and so 
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(14) IE,+|I _I IfEnfl + knIjenII(L2 + 2L1Ijgn| L 11/hj + LipK"). 

Now let c = L2 + 2L1K' ,=1 1/cj + LipK" and suppose that h is small enough 
that K'h ecT < 5. 1leojj = Jj8oll = IIEoll = 0, SO by (13) 118,11 < K'h, and from (12) 
and (14) it follows that 1JE1!l = 0 and le1ll < K'h < K'h ecT < 5. For n ? 2 it fol- 
lows by induction, using (12), (13) and (14), that 

i18nil _ K'h I 
IlEnIl ? K'h[(1 + cki) ... (1 + ck/n-) - 1] 

and 

jenjj ? K'h(1 + cki) ... (1 + ckn-1) < K'h exp [c(k1 + * + kAn-)] 
? K'hecT < a. 

By (10), Xn > M and so, letting K = K'ecT, the proof of the theorem is complete. 

4. Backward Time Differences. For the backward difference scheme considered 
in this section no restrictions such as those imposed in (7) or (8) are necessary. The 
difference approximation is unconditionally stable in the maximum norm. Since the 
size of the time step need not be monitored, and perhaps changed, during the 
computation, a fixed time step is used. k will denote the time step. Mesh points in R 
will have coordinates of the form (vlhl, * * *, vphp, nk)-again denoted by (v, n). 

The system (1) is to be approximated by the difference equations: 

fori= 1, s 

(15) ~Ui(v, n + 1) - Ui(v, n) + ( n U(v n)) U (v, n + 1) - Ui(Bv, n + 1) 
k ~~~~j=1 

=fi(v, n, U(v, n)) . 

Once again, -ij denotes the larger of gii and 0. These difference equations can be 
solved explicitly as easily as (5). Indeed, (15) is easier to implement on a computer 
since the size of the time step is fixed. 

For the special case of the linear system (3), the difference equations can be 
written 

Ui(v, n) + Z i=i pgsij(v, n)Ui(Byv, n + 1) + kfi(v, n) 
(16) %(,f +1 1 + ZE'JL pjgij(v, n) 

where pj = kl/hj. 

LEMMA 2. Let u = (ul, ..., us) be a solution for the linear system of equations (3), 
and suppose that the conditions in (4) are satisfied. In addition, suppose each of the 
functions gi j and fi has continuous first derivatives on R. For j = 1, * * *, p suppose the 
interval [0, aj] is subdivided into intervals of length cj, and let k* by any positive number. 
Then there exists a constant K such that the following is true: if the intervals [0, aj] are 
subdivided into intervals of length hj such that hj = hcj for some number h, and if 
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U = (U1, ** *, Us) is the solution for the difference equations (16) with k = k*h, 
then for i = 1, * * *, s and (v, n) in R, I u (v, n) - U. (v, n) I _ Kh. 

Proof. Let ei(v, n) = ui(v, n) - Ui(v, n). By expanding the functions u , fi and 
gij in Taylor's series about the mesh points in R it can be shown, using the fact that 
pjgij(v, n) _ 0, that 

lei(v, + +P1 < gei(v, n)lj + =i pjgij(V)Ie(2l + 1 2B 
1 + Zj=i p ig (v, n) 

for some constant B. 
A significant difference between the analysis of this scheme and that of Keller 

and Thomee (and our previous scheme) now arises. Let Zr = max le (v, n)j, where 
the max is taken over n + vi + * * + v, = r, (v, n) in R, and i = 1, * * *, s. Thus 
the max is over "diagonals" rather than the next time level. The preceding in- 
equality implies that Zr+l < Zr + k2B for r > 0. Since zo = 0 (indeed Zr = 0 for 
r = 0, ***, p), by induction Zr ? rk2B. Since n < T/k and vj ? a1/h1 = (k*aj)/(lcj), 
r < (k*/lk)(T/k* + ai/cl + * + al/c,), and so 

Zr ? k*(T/k* + al/cl + *.. + al/c,)kB = (k*)2(T/k* + al/cl + * + ap/c,)hB . 

Thus K can be set equal to (k*)2(T/k* + al/cl + * + ap/cp)B and the proof is 
complete. 

THEOREM 2. Let u = (ul, *, us) be a solution for the system of equations (1), and 
suppose the conditions in (2) are satisfied. In addition, suppose that for each of the 
functions fi and gij which appears in (1) the first partial derivatives exist and are 
continuous. For j = 1, *. . , p suppose the interval [0, aj] is subdivided into intervals 
of length cj, and let k* be any positive number. Then there exists a constant K such that 
the following is true: if the intervals [0, aj] are subdivided into intervals of length hj 
such that hj = hcj for some number h, and if U = (Ul, * * *, Us) is the solution for the 
difference equations (15) with k = k*h, then for i = 1, **a, s and (v, n) 
in R, Iui(v, n) - U ((v, n)I < Kh. 

The proof is very similar in approach to that of Theorem 1 but less tedious. 
With Theorem 1 and Lemma 2 as guides it is straightforward enough to be omitted. 

5. Numerical Examples. For simplicity, in this section we will consider only 
single equations with two independent variables. Thus each of the examples will be 
an equation of the form 

au/at + g(x, t, u)au/ax = f(x, t, u) . 
We noted earlier that our difference methods are simple and very easy to use. This 
is particularly easy to see when they are applied to the preceding equation. One 
need only consider what equations (5) and (15) become in this case. 

For convenience, in what follows we shall refer to the difference scheme repre- 
sented by Eq. (5) as Method F (for forward) or simply F. Similarly, Eq. (15) shall 
be called Method B or sometimes B (for backward). 

Example 1. Koenig [1] applies invariant imbedding to a boundary value problem 
in chemical engineering and obtains a partial differential equation which in our 
notation is 
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au/at + 2(x-2u-.0lu2)(1-x)au/ax = 2(x-2u-.0lu2)(1-u) . 

This is to be solved subject to the conditions u(x, 0) 0 = u(0, t). Here t denotes 
the length of a gas-absorption tower and u(x, t) denotes the concentration in the 
outgoing liquid phase when the concentration in the incoming gas phase is x. Koenig 
indicates how the equation can be solved numerically by a scheme which is es- 
sentially our Method F, although he fails to note that the method is only condi- 
tionally stable. The following table shows some representative numbers computed 
using our difference schemes. For both methods h = .1 was used, and the tabulated 
values are at x = 1/2. For F the value r = .95 was used; k = h was used for B. 

t 0 1 2 3 4 5 

F 0 .2380 .2485 .2496 .2497 .2497 
B 0 .2367 .2484 .2495 .2497 .2497 

As the table indicates, the solution tends to a "steady state"-in fact, for t 
greater than about 9, the approximations computed by the two schemes agreed 
to nine decimal places and the numbers were no longer changing with t. 

The steady-state solution has a physical interpretation, and in addition the 
numerical results can be compared with the true steady-state solution. There is 
more than one steady-state solution. One is u(x) = x. The others are found by 
solving the quadratic x - 2u - .0u2 = 0 for u as a function of x. The solution being 
found by the difference schemes is the one obtained by taking the positive root of 
the quadratic. Both schemes compute it to the accuracy of the machine. The ex- 
pression x - 2u - .0u2 incorporates the equilibrium data (see Koenig's derivation 
of the equation in [1])-i.e., when the gas phase concentration x and the liquid 
phase concentration u are in equilibrium, then x - 2u - .0u2 = 0. Only positive 
values of u are physically meaningful, and one expects that if the tower is lengthened 
the concentration u should approach the value at which it is in equilibrium with the 
concentration x. As we have noted, the numerical approximations display this be- 
havior. 

Examples 2 and 3. Gourlay and Morris [8], [9] discuss several methods for solving 
problems like (1) although they deal with at most three independent variables. They 
are interested in second-order methods and their schemes are considerably more 
complicated than ours. They make only a linearized stability analysis and do not 
prove convergence. Our next two examples are from their papers. Both have known 
solutions, so it is easy to make comparisons. The results show that, as expected, 
their schemes usually do better than our first-order methods. Nevertheless, for the 
step sizes they used, their methods do not have a clear cut advantage over our much 
simpler schemes. 

The problem 

au/at+u(au/ax) =0, 0 < x < 1 t > 0, 

u(x, 0) =x, u(0, t) = 0 

is used as an example in [8]. This problem has the solution u(x, t) = x/(1 + t). The 
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following table shows some results of computations using our schemes to approxi- 
mate this problem. The numbers tabulated are the differences between the solution 
and the approximation at x = 1/2 for the values of t shown. For both schemes 
h = .1 was used. r = .95 was used for F, and h = k was used for B. Method B 
happens to be exact for this problem for any choice of h and k, so the row labelled 
B is roundoff. 

t 0 2 4 6 8 10 12 

F 0 6.2 X 10-3 3.2 X 10-3 2.0 X 10-3 1.4 X 10-3 9.9 X 10-4 7.6 X 10-4 
B 0 1.5 X 10-11 2.9 X 10-11 2.7 X 10-11 2.7 X 10-11 1.5 X 10-11 1.1 X 10-11 

Gourlay and Morris used several variations of their schemes on this problem 
for the mesh with h = k = .1. At the point x = 1/2, t = 10 they report errors 
of 1.1 X 10-s, -2.9 X 10-2, 1.1 X 10-, -2.5 X 10-4, 5.7 X 10-4, 9.2 X 10-3, and 
1.6 X 10-s. 

In [9] Gourlay and Morris treat inhomogeneous problems, and as an example 
use the problem 

au xuau 2x~U2 )o(X2 t)t> 
at + x28 tu 2 1) Cos 0z < ) x < 1, t > 1, 

u (x, 1) = sin (X2 - 1), u (0 t) = -sin t. 

This problem has the solution u(x, t) = sin (x2 - t). Some results of our computa- 
tions are shown in the following table. This time the numbers tabulated are the 
differences between the solution and the approximations at x = 0.7. Again h = .1 
was used for both schemes, a = .95 was used for F and h = k for B. 

t 1 3 5 7 9 11 13 

F 0 7.4 X 10-2 5.0 X 10-2 -1.3 X 10-2 6.3 X 10-2 5.9 X 10-2 -1.5 X 10-2 
B 0 4.8 X 10-2 3.3 X 10-2 -1.7 X 10-2 5.1 X 10-2 4.8 X 10-2 -2.0 X 10-2 

The corresponding numbers obtained by Gourlay and Morris at x = .7, t = 11 
using several variations of their methods with h = k = .1 were 1.6 X 10-2, 5.4 X 
10-3, 2.3 X 10-3, 1.2 X 10-3, 2.6 X 10-4, and 1.6 X 10-3. 
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